منابع مشابه
Search K Nearest Neighbors on Air
While the K-Nearest-Neighbor (KNN) problem is well studied in the traditional wired, disk-based client-server environment, it has not been tackled in a wireless broadcast environment. In this paper, the problem of organizing location dependent data and answering KNN queries on air are investigated. The linear property of wireless broadcast media and power conserving requirement of mobile device...
متن کاملAsynchronous opinion dynamics on the $k$-nearest-neighbors graph
This paper is about a new model of opinion dynamics with opiniondependent connectivity. We assume that agents update their opinions asynchronously and that each agent’s new opinion depends on the opinions of the k agents that are closest to it. We show that the resulting dynamics is substantially different from comparable models in the literature, such as bounded-confidence models. We study the...
متن کاملBrute-Force k-Nearest Neighbors Search on the GPU
We present a brute-force approach for finding k-nearest neighbors on the GPU for many queries in parallel. Our program takes advantage of recent advances in fundamental GPU computing primitives. We modify a matrix multiplication subroutine in MAGMA library [6] to calculate the squared Euclidean distances between queries and references. The nearest neighbors selection is accomplished by a trunca...
متن کاملEfficient search for the top-k probable nearest neighbors in uncertain databases
Uncertainty pervades many domains in our lives. Current real-life applications, e.g., location tracking using GPS devices or cell phones, multimedia feature extraction, and sensor data management, deal with different kinds of uncertainty. Finding the nearest neighbor objects to a given query point is an important query type in these applications. In this paper, we study the problem of finding o...
متن کاملFast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph
We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition Letters
سال: 2020
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2018.05.001